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Abstract 
Modelling and forecasting volatility of a financial time series has been a significant area of 
research in recent years, owing to the fact that volatility is regarded as an essential notion in 
many economic and financial applications. Because volatility is not directly observable, 
financial analysts are especially eager to obtain an accurate estimation of this conditional 
variance process. As a result, a number of models have been developed that are specifically 
suited to estimate the conditional volatility of financial instruments, with the most well-known 
and widely used model being the conditional heteroscedastic models. The objectives of this 
research are; to model and forecast the volatility and price of the Malaysian stock market; to 
assess the performance of competing models and to simulate the volatility and price of 
Malaysian stock market. This research estimates and examines the performance of ARIMA and 
GARCH family type models, standardized GARCH and GARCH-M for symmetric model and 
EGARCH and GJR-GARCH for asymmetric model using daily return price data. For GARCH 
models, two distributions were used which were the normal distribution and the t-
distribution. The Malaysian stock market which is Kuala Lumpur Composite Index (KLCI) was 
studied using daily data over an 11-years period beginning from 1st January 2010 and ending 
on 31st December 2020. The results showed that the ARIMA method is not suitable in 
forecasting long term data since the ARCH effect is present. While, the performance of 
asymmetric GARCH models (GJR-GARCH), especially when the fat-tailed densities are taken 
into account in the conditional volatility, are better than symmetric GARCH. In addition, the 
student-t distribution performs better than the normal distribution. Moreover, it was found 
that the AR (1) GJR-GARCH model provides the best forecast for the Malaysian stock market, 
KLCI. Thus, it was concluded that the asymmetric AR (1) GJR-GARCH model coupled with the 
student-t distribution, performed well in modeling KLCI dataset. The forecasting process 
resulted in three different outcomes where the first one foresees a stationary trend of 
RM1,825.00 all over the years. While the second forecast indicates a fluctuation of around 
RM1,825.00 to RM1,625.00 and the last outcome had forecast the best result where the trend 
shows a positive upward trend of over RM1,850.00 all over the year of 2021. 
Keywords: GARCH Models, Asymmetric, Stock Market Indices, Volatility Modelling, 
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Introduction 
Time series data are often contaminated with volatility clustering. Forecasting will be far off 
from what we predict if the data used contains high volatility. The research on volatility 
identification is essential since their existence can lead to measurement error of the 
parameter, or inaccuracy in forecasting. As volatility is often perceived as a measure of risk, 
one is of course interested in forecasting the volatility. 
Asymmetric phenomena sometimes arise in data series which tend to behave differently when 
the economy moves into recession rather than coming out. Many data series have shown 
periods of stability, followed by periods of instability with high volatility. This implies that over 
a period of time, volatility is irregular. Since volatility may be used to calculate return and 
price, it is necessary to estimate volatility as accurately as possible. A time series model can 
be used to represent the volatility of asset returns. 
The employed time series model however must comply with the property of 
heteroscedasticity. Heteroscedasticity explained the changes of volatility over the time 
horizon. The GARCH model proposed by Bollerslev (1986) is brought upon as it is effective 
with data containing high volatility. Many researchers had been widely using the GARCH 
model in order to estimate the volatility of time series data or stock market index. 
 
Therefore, the objectives of this study are 
1. To model the volatility of Kuala Lumpur Composite Index (KLCI) stock market by 

employing different univariate specifications of GARCH type models for daily 
observations on the index returns series of the market over the period of 1st January 
2010 to 31st December 2020; 

2. To measure the performance of competing models; and  
3. To simulate the volatility and price of KLCI. 
 
Literature Review 
Forecasting via ARIMA Model 
Deepika et al (2012) sought to examine the predicting of gold prices in the short-term using 
the ARIMA model and monthly gold prices. However, the forecast for the three-month period 
demonstrated a downward trend, and the Ljung Box Q test rejected the null hypothesis of 
residuals being pure white noise, suggesting that ARIMA was an inadequate fit since residuals 
were contaminated. They concluded that, with too many complex factors influencing gold 
prices and the dynamics of supply and demand for gold changing, using the ARIMA framework 
to forecast gold prices is inappropriate. 
The research was supported by Guha and Bandyopadhyay (2016) who investigated the 
implementation of the ARIMA time-series model to predict the potential gold price based on 
past data from November 2003 to January 2014 to minimize the probability of purchasing of 
gold and thus, to provide the consumer with guidance on the purchase or selling of yellow 
metal. The analysis of performance of the gold prices had found that the best model in 
predicting the future values of gold was ARIMA (1, 1, 1). The authors had also concluded that 
the limitation of this approach was that it was only used for short runs to pinpoint minor 
variations in data. In the event of unexpected change in the data set (when the variation is 
large), a change in government policies, or economic instability (structural break), it becomes 
burdensome to capture the exact change, and thus this model becomes inefficient to forecast 
in those particular circumstances. Furthermore, forecasting with the ARIMA method, is based 
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on the assumption of linear historic data. However, there is no solid proof that the price of 
gold is linear in nature. 
 
Forecasting via GARCH Model 
Kingsley (2019) in his study, investigated the volatility in equity prices of insurance stocks 
traded on the floor of the Nigerian Stock Exchange. Excluding weekends and public holidays, 
the time series data covered almost five years starting from 4th of March 2011 to 31st of 
December 2015 resulting in approximately 1106 observations. The study concluded that the 
best model in capturing the presence of volatility in the insurance stocks through the 
information criteria of Akaike, Bayesian, Shibata and Hanna Quinn were the GARCH (0, 3) 
which was the same as ARCH (3) and GARCH (1, 1).  
Meanwhile, Sharma, Aggarwal and Yadav (2020) had conducted a study on “Comparison of 
linear and non-linear GARCH models for forecasting volatility of select emerging countries”. 
They had empirically investigated the volatility of financial markets of five major emerging 
countries (China, India, Indonesia, Brazil and Mexico) over a period of two decades from 
January 2000 to December 2019 using univariate volatility models namely GARCH (1,1), 
EGARCH (1,1) and TGARCH (1, 1). The results show that the GARCH (1,1) model outperforms 
non-linear GARCH models for forecasting volatility since the effect of leverage is negligible. 
China is thought to be the most volatile, followed by India, which is turbulent but positively 
biased, and Indonesia, which is the least volatile. The research can assist investors in improving 
the worldwide diversity of their portfolios and discovering the greatest hedging possibilities. 
 
Forecasting the Kuala Lumpur Composite Index (KLCI) 
Nor and Shamiri (2007) had modelled and forecasted the volatility of the Malaysian and the 
Singaporean stock indices using asymmetric GARCH models and the non-normal densities. In 
their paper, three GARCH (1, 1) models (GARCH, EGARCH and GJR-GARCH) were examined 
and estimated using daily price data. Using daily data of over a 14-years period, two Asian 
stock indices (KLCI and STI) were studied. Gaussian normal, Student-t and Generalized Error 
Distributions were applied on the competing models including GARCH, EGARCH and GJR-
GARCH. The forecasting performances of the asymmetric GARCH models (GJR-GARCH and 
EGARCH) was estimated and shown to be better than the symmetric GARCH especially when 
fat-tailed densities were considered in the conditional volatility. Additionally, it was found that 
the best out-of-sample forecast for the Malaysian stock market was the AR (1)-GJR model. 
Meanwhile, better estimation for the Singaporean stock market was provided by the AR (1)-
EGARCH. 
Consequently, Shamiri and Isa (2009) conducted a study on modelling and forecasting 
volatility of the Malaysian stock markets. The performance of symmetric GARCH, asymmetric 
EGARCH and non-linear asymmetric NAGARCH models were compared with six error 
distributions which were normal, skew normal, student-t, skew student-t, generalized error 
distribution and normal inverse Gaussian. The distinction centered on two related aspects: 
the disparity between symmetrical and asymmetrical GARCH (GARCH versus EGARCH and 
NAGARCH) and the difference between normal tailed symmetrical, heavy tailed symmetrical 
distributions and both high-tailed and asymmetric distributions for forecasting KLCI stock-
market index return volatility. As predicted, the KLCI leverage market shown by the EGARCH 
model was statistically significant with a negative sign suggesting that negative shocks mean 
a higher conditional variance over the next duration than positive shocks of the same sign, 
indicating that the presence of leverage effect was observed in the returns of the KLCI stock 
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market index. However, the distinction between models for each density (normal versus non-
normal) showed that, based on the various metrics used for the performance of the volatility 
prediction, the EGARCH model offered the best out-sample approximation for KLCI that was 
obviously superior to the symmetrical models. The results showed that non-normal 
distributions had better in-sample results than normal distributions. However, the out-of-
samples findings showed less evidence of superior predictive capabilities. By looking at the 
overall results, it was arguable that an asymmetric model combined with student-t 
distribution would perform very well with the investigated dataset. The dynamics of the first 
and second moments of the KLCI model seem to be captured by the models. Thus, they 
concluded that rather than the choice of GARCH models, successful volatility model forecasts 
depended much more heavily on the choice of error distribution. 
 
Methodology 
Data Source 
For this study, the time series forecasting methods are applied on the secondary data which 
is the Kuala Lumpur Composite Index (KLCI) data. The secondary data was obtained through 
the open-source Yahoo! Finance website. The daily data covers a period of 11 years which 
began on 1st January 2010 and ending on 31st December 2020. The total observations for the 
KLCI dataset are 2,695 representing the number of trading days. The data was converted into 
log return using the following formula: 

𝑅𝑡 = (100) ∗ (𝑙𝑛 𝑙𝑛 (𝑃𝑡) − 𝑙𝑛 𝑙𝑛 (𝑃𝑡−1))    
 
wherein is the natural logarithm operator; t is the time period in days (date for trading days 
of KLCI); 𝑅𝑡 is the return for period t (log return for closing price of KLCI); 𝑃𝑡 is the index closing 
price for period t (closing price of KLCI). 
 
ARIMA Model 
This study applied the Autoregressive Integrated Moving Average (ARIMA) model which was 
developed using Box-Jenkins’s methodology. ARIMA model is a mathematical model that was 
designed by George Box and Gwilym Jenkins (1970) to forecast data from a specified time 
series using probabilistic approach. There are four basic models involved in the ARIMA 
modelling which are Autoregressive (AR), Moving Average (MA) model, Mixed Autoregressive 
Moving Average (ARMA) and Mixed Autoregressive Integrated Moving Average (ARIMA) 
model.  
 
ARCH Model 
Engle (1982) introduced a model time-varying conditional variance with autoregressive 
conditional heteroscedasticity (ARCH) model by using lagged disturbances. ARCH is a function 
of autoregression which assumes that the variance is not constant over time and also affected 
by past data. The idea behind this model is to see the relationship between the current and 
the previous random variable. 
The ARCH model is built as: Let R1, R2, …, RT be the sequence of random data, and be the set 
of random data up to time t, then ARCH model with degree q with respect to Rt is: Rt |Ft-1 ~ N 
(0,𝜎𝑡

2), where Ft-1 is the information available at time t-1. Conditional variance of the residual 
𝜀𝑡 which is 𝜎𝑡

2, can be written as, 
𝜎𝑡

2 =  𝜔 + 𝛼𝑡−1
2 + 𝛼2𝜀𝑡−2

2 + ⋯ + 𝛼𝑞𝜀𝑡−𝑞
2  (1) 
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where 𝜔 and α are non-negative constant; the variance residual depends on the-q squares of 
residual, and is called ARCH. The ARCH model can be written as shown in Equation (2), (Brooks, 
2014). 
 

𝑅𝑡 = 𝜔 + ∑ ⬚

𝑝

𝑖=1

𝛼1𝑅𝑡−𝑖 + 𝜀𝑡 (2) 

 
Where 𝜀𝑡~ N(0, 𝜎2); 𝜔 and 𝛼1 are non-negative constant; 𝜀𝑡 denotes a discrete-time stochastic 
taking the form of 𝜀𝑡 =  𝑧𝑡𝜎𝑡 where 𝑧𝑡 ~ 𝑖𝑖𝑑 (0, 1), and 𝜎𝑡 is the conditional standard deviation 
of return at time t.  
 
GARCH Model 
The GARCH model is a generalized form of ARCH. This model is built to avoid the order of the 
ARCH model, which is too high. Bollerslev (1986) introduced the GARCH model which suggests 
that the time-varying volatility process is a function of both past disturbances and past 
volatility. The GARCH model not only observes the relationship among some residuals, but 
also depends on some past residuals. The GARCH model with degree p and q is defined as 
follows. 
 
Rt |Ft-1~ N(0,𝜎𝑡

2) 
 
GARCH model allows the conditional variance based on the conditional variance of the 
previous lag. So, the equation of conditional variance becomes as presented by Equation (3),. 
 

𝜎2
𝑡 = 𝜔0 + ∑ ⬚

𝑞

𝑖=1

𝛼𝑖𝜀
2

𝑡−𝑖 + ∑ ⬚

𝑝

𝑗=1

𝛽𝑗𝜎2
𝑡−𝑗 (3) 

 
Where 𝜔0 is the constant term; 𝛼1, 𝛼2, … , 𝛼𝑞 represented the parameters of ARCH 

specifications; 𝛽1, 𝛽2, … , 𝛽𝑝 represented the parameters of GARCH specifications; p and q are 

the respective orders of ARCH and GARCH processes. The present values of the conditional 
variance are parameterized based on the q lag from the squares residual and the p lag of the 
conditional variance and is written as GARCH (p,q). So, the time-varying conditional variance 
of the GARCH model is heteroscedastic with both autoregression and MA (Wang, 2009). The 
simplest specification of this model is the GARCH (1, 1) model which can be written as shown 
in Equation (4), (Bollerslev, 1986). 
 

𝜎𝑡
2 = 𝜔0 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2  (4) 

 
According to Bollerslev (1986), all the coefficients of the conditional variance specifications 
fulfilled the stationarity assumptions when 0 < 𝛽1 < 1, 0 < 𝛼1 < 1 and 𝛼1 + 𝛽1 < 1. 
 
GARCH in Mean (GARCH-M) Model 
Another well-known symmetric model is the GARCH in Mean (GARCH-M) model which was 
developed by Engle et. al (1987). In most of the financial markets, it is expected for risk to be 
compensated by a higher return and the return of a security may depend on its volatility. To 
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model such a phenomenon, one might consider the GARCH-M model. This variant of the 
GARCH family allows the conditional mean of return series to depend on its conditional 
variance. A simple GARCH-M (1, 1) model can be defined by the two equations, the one for 
conditional mean is given by  
 

𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡 where 𝜇𝑡 =  𝜇 +  𝜆𝜎𝑡
2

 (5) 
 
The equation for conditional variance is the same as provided by the GARCH (p, q) model in 
Equation (3) and its specific case GARCH (1, 1) by Equation (4). 
 
GJR-GARCH Model 
This GJR-GARCH model was proposed by Glosten, Jagannathan and Runkle (1993). The 
generalized form was given by: 
 

𝜎𝑡
2 = 𝜔0 + ∑ ⬚

𝑞

𝑖=1

(𝛼𝑖𝜀
2

𝑡−𝑖 + 𝛾𝑖𝑆𝑡−𝑖
− 𝜀2

𝑡−𝑖) + ∑ ⬚

𝑝

𝑗=1

𝛽𝑗𝜎2
𝑡−𝑗  (6) 

 
where 𝛼0 and 𝛾𝑖 are non-negative constant term; 𝑆𝑡

− is a dummy variable. In this model, it is 
assumed that the impact of 𝜀2

𝑡 on the conditional variance 𝜎2
𝑡 is different when 𝜀𝑡 is positive 

or negative. The positivity of conditional variances is assured by ω > 0, α ≥ 0, β ≥ 0, and α + γ 
≥ 0, the variances stationary is assured by α + β + 0.5γ < 1, and 𝑆 is an indicator function that 
expressed by 
 

𝑆𝑡−𝑖
− = {0 𝑖𝑓 𝑅𝑡−1 ≥ 0, (𝑔𝑜𝑜𝑑 𝑛𝑒𝑤𝑠) 1 𝑖𝑓 𝑅𝑡−1 < 0, (𝑏𝑎𝑑 𝑛𝑒𝑤𝑠)  

 
Which can be interpreted as when 𝛾 = 0, the model reduces to the standard GARCH model 
which treats bad news (𝑅𝑡−1 < 0) and good news (𝑅𝑡−1 ≥ 0) symmetrically: that is, bad news 
and good news have the same impact (𝛼𝑅𝑡−1

2 ) on the conditional variance 𝜎𝑡
2. When 𝛾 ≠ 0, the 

news impact is asymmetric: that is, bad news and good news have different impacts on the 
conditional variance. Bad news has an impact of 𝛼 + 𝛾 on conditional variance, while good 
news has an impact of 𝛼 on conditional variance. Hence, if 𝛾 > 0, bad news has a larger impact 
on conditional variance than good news. 
It is for this reason that the dummy variable 𝑆𝑡

− takes the value ‘0’ (respectively ‘1’) when ε is 
positive (negative). It is worth noting that the TGARCH model of Zakoian (1994) is very similar 
to GJR. However, TGARCH models the conditional standard deviation instead of the 
conditional variance. 
 
Exponential GARCH (EGARCH) Model 
The first asymmetric GARCH model known as exponential GARCH model (EGARCH) was 
introduced by Nelson (1991). This model looks at the conditional variance and tries to 
accommodate for the asymmetric relation between stock returns and volatility changes. 
Nelson implements that by including an adjusting function g (z) in the conditional variance 
equation, it in turn becomes expressed by: 
 



INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN ECONOMICS AND MANAGEMENT SCIENCES 
Vol. 1 1 , No. 2, 2022, E-ISSN: 2226-3624 © 2022 

127 
 

𝑙𝑛 𝜎𝑡
2 = 𝛼0 + ∑ ⬚

𝑝

𝑖=1

𝛼𝑖𝑔(𝑧𝑡−𝑖) + ∑ ⬚

𝑞

𝑗=1

𝛽𝑗𝑙𝑛(𝜎𝑡−𝑗
2 ) 𝑡 (7) 

 
where, 𝑧𝑡  =  𝜀𝑡 / 𝜎𝑡 is the normalized residual series. The value of g (𝑧𝑡) is a function of both 
the magnitude and sign of 𝑧𝑡   and is expressed as: 
 

𝑔 (𝑧𝑡)  =  𝜃1𝑧𝑡⏟𝑠𝑖𝑔𝑛 𝑒𝑓𝑓𝑒𝑐𝑡  +  𝜃2[|𝑧𝑡|  −  𝐸|𝑧𝑡|]⏟𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 (8) 

 
Moreover, notice how 𝐸|𝑧𝑡| depends on the assumption made on the unconditional density. 
The EGARCH model differs from the standard GARCH model in two main aspects. First, it 
allows positive and negative shocks to have a different impact on volatility. Second, the 
EGARCH model allows large shocks to have a greater impact on volatility than the standard 
GARCH model. 
 
Results 
Descriptive Statistics of KLCI 
Table 1 shows the descriptive statistics of KLCI series which consist of 2,695 samples of 
observation for all trading days. The data covers a period of 11 years, beginning on 1st January 
2010 and ending on 31st December 2020.  The mean return of 0% indicated that on the 
average, the return price is neither gaining profit or loss. However, it was accompanied by a 
volatility of 0.01%. This may be due to Malaysia’s investors' normal approach which is to “wait-
and-see” that is common for emerging markets and is consistent with the previous study (Ng, 
2000; Mohd Nor and Shamiri, 2007).  
 
Table 1 
Summary Statistics for Daily Returns 1 January 2010 – 31 December 2020 

Statistic
s 

Sampl
e 

Mea
n 

Media
n 

Standar
d 
Deviatio
n 

Skewnes
s 

Kurtosi
s 

Q(10) Q2(10) LM 

Values 2,695 0 0 0.01 -0.2 9.38 
23.64*
* 

11.65*
* 

14.93*
* 

** Significant at 5% significance level 
 
The statistical features such as the skewness, kurtosis and their tests are shown in the table. 
The Ljung-Box Q-statistics, Q(10) and Q2(10) are reported under the null hypothesis of non-
serial correlation tests in residuals of return and squared residuals of return respectively. At 
5% significance level, the null hypothesis of non-serial correlation is rejected respectively. This 
time series has the typical features of stock returns as fat-tail, spiked peak and persistence in 
variance.  
With the evidence of ARCH effects (Humala and Rodriguez, 2010) which is indicated by the 
Lagrange Multiplier (LM) test, it is possible to proceed to the second step of the analysis 
focused on the GARCH modelling of market’s volatility. 
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Figure 1: KLCI Log Returns Figure 2: Histogram of Log Returns 

Distributions 
 
Figure 1 shows the behavior of the KLCI log returns, over the sample period. There is evidence 
of volatility clustering and that large or small asset price changes tend to be followed by other 
large or small price changes of either sign (positive or negative). This implies that stock return 
volatility changes over time (Gallant et. al, 1991). In general, the series demonstrates the 
existence of the ARCH effect (also known as heteroscedasticity) ubiquitous in various financial 
time series data. 
Figure 2 shows the distribution of KLCI log returns. The curve for returns is a bit taller and the 
green line which indicates the density has higher values implying that the tails are thicker. This 
means that there are days where higher or lower returns are obtained compared to the 
expectations of the normal distribution indicated by the red line. 
 
ARIMA Model 
The Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) were plotted 
to observe the stationarity of the time series model.  
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Figure 3: The ACF for Daily Return of KLCI Figure 4: The PACF for Daily Return of KLCI 
 
The ACF in Figure 3 shows two significant spikes at lag 1 and 2, then the rest taper off to zero 
as the lag increases. While the PACF in Figure 4 shows most of the spikes are not significant 
after the first and second lag. These behaviors indicate that the daily return of KLCI data meet 
stationary assumptions.  
 
Table 2 
The Augmented Dickey-Fuller (ADF) Test for Log Return Price of KLCI 

Index ADF Statistics 
Critical Values 

(5% Significance Level) 

KLCI -14.068 0.01 

 
From Table 2, the ADF test indicates that the log return is stationary. Hence, the null 
hypothesis of a unit root test at all conventional levels for the series can be rejected. Thus, it 
is concluded that the log return series is stationary over a period. 
The ACF in Figure 3 shows significant spikes at lag 1 and 2 that suggest the order of MA is 2. 
On the other hand, two significant spikes were found at lag 1, 2 and 20 on the PACF plot as 
depicted in Figure 4. The significant spikes at lag 20 can be ignored since only the current event 
that is significantly affected are taken into consideration. Hence, two orders of AR might be 
suitable for the daily return of KLCI. Overall, the suggested ARIMA model to be fitted to daily 
return of KLCI are ARMA (1, 0), ARMA (1, 1), ARMA (1, 2), ARMA (2, 0), ARMA (2, 1) and ARMA 
(2, 2). 
 
Table 3 
Performance of ARMA Model on Daily Return of KLCI 

ARMA 
Model 

ARMA 
(1, 0) 

ARMA 
(1, 1) 

ARMA 
(1, 2) 

ARMA 
(2, 0) 

ARMA 
(2, 1) 

ARMA 
(2, 2) 

AIC -19444.96 -19449.32 -19450.15 -19452.68 -19450.01 
Non-
invertible 

BIC -19427.26 -19425.72 -19420.65 -19434.98 -19420.51 
Non-
invertible 

 
Table 3 shows the performance of competing models of ARMA based on AIC and BIC. ARMA 
(2, 0) is selected as the best ARMA model to forecast daily return of KLCI. For ARMA (2, 2), the 
parameter cannot be estimated since the matrix has become singular. Thus, the ARMA (2, 0) 
was chosen to be the best fit. 
Table 4 
ARIMA (2, 0, 0) with Zero Mean Model 

 𝜙1 𝜙2 

Coefficient 0.0496 0.0559 
Standard Error 0.0192 0.0192 

AIC=-19452.68     BIC=-19434.98 

 
Table 4 shows the result obtained for the best fit ARIMA model. The best model is ARIMA (2, 
0, 0) with no-zero mean AIC value of -19452.68. The mean equation for the following ARIMA 
(2, 0, 0) model is as follow (SE in parenthesis): 
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𝑅̂𝑡  =  0 +  0.0496⏟(0.0192)𝑅𝑡−1  +  0.0559⏟(0.0192)𝑅𝑡−1 

 
The ARIMA (2, 0, 0) was chosen to be the best fit by the auto arima function as it has the 
lowest value of AIC and BIC. 

 
Figure 5: Residuals from ARIMA (2, 0, 0) 

 
Figure 5 shows that the residuals from ARIMA (2, 0, 0) are well-behaved. The residual plot 
shows that the residuals are fluctuating around zero with high volatility. The ACF plots of 
residual show two significant spikes at lag 20 and lag 25. The histogram also seemed to be 
somewhat normally distributed. Next, the test for the ARCH effect was performed by applying 
the Ljung-Box test on the squared residuals of the ARIMA (2, 0, 0) model. 

 
Figure 6: The ACF for the Squared Residuals of ARIMA (2, 0, 0) Model 

 
From Figure 6, it can be observed that the ACF of squared residuals shows many significant 
lags. Hence, it can be concluded that there are indeed ARCH effects and thus the modelling of 
the volatility should be performed. In addition, the existence of spikes which were 
represented by the significant lags further proved that using the ARIMA model is not an 
appropriate and suitable approach. 
 
GARCH Model 
Table 5 shows the estimation results of the GARCH models. The application of asymmetric 
GARCH models appears to be appropriate. At standard levels, all asymmetric coefficients are 
significant. Furthermore, the Akaike Information Criteria (AIC) and Bayesian Information 
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Criterion (BIC) values emphasize the fact that the GJR-GARCH and EGARCH models outperform 
the standard and traditional GARCH. 
 
Table 5 
GARCH Models Estimation 

 Normal Student-t 

GARCH (1, 
1) 

GARCH (1, 
1) 

GARCH-M (1, 
1) 

GJR-GARCH AR (1) GJR-
GARCH 

EGARCH 

μ 0.000155*
* 
(0.0001) 

0.000084*
* 
(0.000097) 

-0.000178** 
(0.000119) 

0.000026** 
(0.000098) 

0.000015** 
(0.000103) 

0.000037** 
(0.000092) 

ω 0.000001*
* 
(0.000001) 

0.000001*
* 
(0.000001) 

0.000001** 
(0.000000) 

0.000001** 
(0.000000) 

0.000001** 
(0.000000) 

-0.163954** 
(0.028964) 

α1 0.100062*
* 
(0.016318) 

0.096497*
* 
(0.015497) 

0.049793** 
(0.006397) 

0.047929** 
(0.006279) 

0.046326** 
(0.006551) 

-0.059914** 
(0.010962) 

β1 0.878525*
* 
(0.016483) 

0.887765*
* 
(0.014925) 

0.903469** 
(0.006973) 

0.905707** 
(0.010596) 

0.902941** 
(0.011451) 

0.984061** 
(0.002916) 

γ1   0.058826** 
(0.016713) 

0.064614** 
(0.016802) 

0.072040** 
(0.017717) 

-0.160916** 
(0.054748) 

λ   7.963907** 
(3.050976) 

   

ϕ1     0.053803** 
(0.019919) 

 

Skew  0.901984 0.903267 0.899720 0.900596 0.901582 
Shape  6.227997 6.284410 6.359192 6.532823 6.326640 
AIC -7.4926 -7.5575 -7.5624 -7.5617 -7.5637 -7.5610 
BIC -7.4839 -7.5443 -7.5448 -7.5464 -7.5641 -7.5457 
Q2 (10) 8.475 8.934 8.934 9.681 8.136 8.136 
LM (5)  2.7325 1.6097 1.3073 1.1757 1.46045 

Standard errors are given in parentheses. **: Significant at 5% respectively 

 
As is typical of GARCH model estimates for financial asset returns data, the sum of the 
coefficients on the lagged squared error (α1) and the lagged conditional variance (β1) is close 
to unity 1.00 and 0.99 with the normal and student-t error term respectively, this implies that 
shocks to the conditional variance will be highly persistent indicating that large changes and 
small changes tend to be followed by small changes, this mean volatility clustering is observed 
in KLCI financial returns series. 
According to the Box-Pierce statistics for the squared standardized residuals with lag 10, all of 
the models appear to do a reasonable job of capturing the dynamic of the first two moments 
of the series, which are all non-significant at the 5% level. The conditional heteroscedastic that 
occurred when the test was done on the pure return series (Table 1) was removed when the 
LM test for the presence of ARCH effects was performed at lag 5. 
In EGARCH, since the value of α1 (-0.059914) < 0, the leverage effect is significant, implying 
that the volatility reacts more heavily to negative shocks. Also, the indicator for asymmetric 
volatility, estimates shows that the coefficient for asymmetric volatility, γ1, is negative. This 
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indicates that negative shocks imply a higher next period conditional variance than positive 
shocks of the same sign.  
However, the goodness-of-fit test revealed that at 5% significance level, the p-value of GARCH 
(1, 1) using normal distribution is significant thus, rejecting the hypothesis that a normal 
distribution is appropriate. This result is congruent with the research by Shamiri and Isa 
(2009). 
From the AIC and BIC, it can be concluded that the best model is AR (1) GJR-GARCH with t-
distribution as the model has the lowest AIC and BIC value of -7.5637 and -7.5641. The 
statistical result implied that the parameter of estimations for AR (1) GJR-GARCH model, the 
ARCH coefficients (α1) and the GARCH coefficients (β1) in the conditional variance equation 
of the AR (1) GJR are highly significant with a p-value equal to 0.0000 for both parameters. 
The term for γ1 is also significant which indicates that negative shocks imply a higher next 
period conditional variance than the positive shocks. This suggests the existence of leverage 
effect in returns of the KLCI stock market index. 
In fact, the asymmetric model of AR (1) GJR-GARCH paired with student-t distribution will 
perform very well with the data series that is being investigated. Thus, AR (1) GJR-GARCH 
model was chosen as the best GARCH model to be used to simulate the stock prices of KLCI. 
This result supports the previous study by Nor and Shamiri (2007) which also concludes the 
AR (1) GJR-GARCH model as the best out-of-sample forecast for the Malaysian stock market. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 6 
Simulation for GARCH Model 

Parameter 
True Estimation 
Value 

Simulation 

N = 100 N = 1000 N = 10000 

GARCH (1, 1) 

µ 0.000084 0.000234 0.00017941 0.00006735 
ω 0.000001 0.000000522 0.000000022 0.00000001981 
α 0.096497 0.060067 0.0024789 0.0040096 
β 0.887765 0.9260562 0.9964374 0.9948905 

GARCH-M(1,1) 
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µ -0.000178 0.000712 0.000036 -0.000147 
λ 7.963907 -5.430123 -4.208556 5.948482 
ω 0.000001 0.000003 0.000001 0.000001 
α 0.049793 0.116405 0.026738 0.038880 
β 0.903469 0.771762 0.876713 0.907505 
γ 0.058826 -0.011623 0.127619 0.069123 

EGARCH(1,1) 

µ 0.00001145 -0.00222238 0.00034293 -0.00001236 
ω -0.2365437 -0.2001033 -0.2844630 -0.16406185 
α -0.0681282 -0.2414796 -0.0515247 -0.0694388 
β 0.9772659 0.97691880 0.97274822 0.9838404 
γ 0.2035275 -0.2278832 0.13874991 0.1749741 

GJR-GARCH(1,1) 

µ 0.000026 0.0001084 0.0000954 0.00005382 
ω 0.000001 0.000001133 0.000000802 0.000000687 
α 0.047929 0.062697 0.052671 0.051782 
β 0.905707 0.754522 0.876096 0.893016 
γ 0.064614 0.356331 0.131057 0.078657 

AR (1) GJR-GARCH(1,1) 

µ 0.00001463 0.0001688 0.0001226 0.00006402 
ϕ 0.05380269 -0.2276255 0.0125386 0.03578909 
ω 0.000000653 0.000001085 0.000000857 0.0000007132 
α 0.04632612 0.02927954 0.0528735 0.05108231 
β 0.9029412 0.7642686 0.8717048 0.8899644 
γ 0.07203987 0.4047523 0.1369588 0.08520867 

 
The simulations are carried out by generating 100, 1,000 and 10,000 returns data respectively 
from each model using the true parameter values presented in the tables. The initial values 
for each parameter of GARCH (1, 1), GARCH-M, EGARCH, GJR-GARCH and AR (1) GJR-GARCH 
model were set according to the respective values obtained from the model estimation of 
each GARCH model.  
As observed from Table 6, the larger the sample, the closer the estimation approximates to 
the true parameters. The µ parameter denotes the average mean return. As a result, its 
estimate should converge to zero as n → ∞. Furthermore, the results also indicated that all 
extended models fit significantly better than the standard model. This result shows that all 
extended GARCH models have the potential to outperform the standard GARCH (1, 1) model.  
 
Forecasting Daily Return of KLCI Price 
The best model, AR (1) GJR-GARCH was used to forecast the daily return of KLCI. A 10-days-
ahead forecast was performed on the daily return of KLCI data. The date for every closing price 
is 4th January for every stock market since the initial 3 days were excluded as public holidays 
(Samuelsson, 2021). 
 
Table 7 
Forecast Value and Sigma Value of Daily Return of KLCI Price 

 Date Return Sigma 

T + 1 4/1/2021 -0.0005489 0.009033 
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T + 2 5/1/2021 -0.00001569 0.008996 

T + 3 6/1/2021 0.00001300 0.008959 

T + 4 7/1/2021 0.0001454 0.008923 

T + 5 8/1/2021 0.0001462 0.008888 

T + 6 11/1/2021 0.0001463 0.008852 

T + 7 12/1/2021 0.0001463 0.008818 

T + 8 13/1/2021 0.0001463 0.008783 

T + 9 14/1/2021 0.0001463 0.008750 

T + 10 15/1/2021 0.0001463 0.008716 

 
A negative return was forecasted for the initial two days. Then, the return starting shows an 
increasing trend towards positive returns. The expected returns for the next 8-days then were 
expected to be positive. Thus, the amount of loss was also expected to decrease as the 
forecast value begins to increase positively. 

 

 

 

 
Figure 7: Forecast for 10-days-ahead of KLCI Figure 8: Variance of Forecasted KLCI 

 
Figure 7 shows the forecasting period of 10-days-ahead for KLCI data. It was observed that the 
KLCI stock price will continue to increase in the future. Figure 8 depicted the variance of the 
KLCI data that was forecasted for a period of 10-days-ahead. It can be concluded that as the 
time increases, the risk for the investors to invest in the stock market will decrease in the 
future. Therefore, the investors can increase the weightage to the risky assets so that they can 
gain more profit 
 
 
 
 
 
 
Table 8 
Forecast Value and Sigma Value of Daily Return of KLCI Price 

Date Forecast Value Actual Value Forecast Error 

4/1/2021 -0.0005489 -0.0005489 0.00% 

5/1/2021 -0.00001569 0.003606707 0.01% 

6/1/2021 0.000013 -0.01018435 0.01% 

7/1/2021 0.0001454 0.006897115 0.01% 

8/1/2021 0.0001462 0.018865217 0.01% 

11/1/2021 0.0001463 -0.00976004 0.01% 

12/1/2021 0.0001463 -0.003221518 0.01% 
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13/1/2021 0.0001463 0.015291184 0.01% 

14/1/2021 0.0001463 -0.00059877 0.008% 

15/1/2021 0.0001463 -0.005318791 0.01% 

Average Forecast Error 0.009% 

 
From Table 8, the forecasting error testing conducted on predicted data using AR (1) GJR-
GARCH model found that the average percentage of forecasting error is 0.009%, this result is 
rational because the value did not exceed 5% margin of error (Khair, Fahmi, Al Hakim and 
Rahim, 2017). Thus, this implies that the AR (1) GJR-GARCH model is a reliable model in 
forecasting the KLCI. 
 

 
Figure 9: Forecast Value vs Actual Value 

 
Figure 9 shows the comparison between forecast value against the actual value of KLCI. 
Although the actual value of KLCI for the first 10 days were quite different from the forecast 
value, the forecast error is not large which was below the 5% margin of error. Thus, the value 
was deemed to be reliable for forecasting. 

 
Figure 10: Forecasting Simulation for 2010 and 2020 

 
The volatility was simulated for the period of 2010 and 2020. From Figure 10, low volatility 
was observed during 2010 where it was forecasted that for one year after 2010, the volatility 
was likely to rise. The result is consistent with the KLCI data obtained from Yahoo! Finance 
which was used in this study. At the end of 2020, the volatility was high. So, based on the 
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forecast, it was expected that the volatility was going to decrease in 2021. Basically, it was 
expected that the volatility would fall below average. 

 
Figure 9: Forecasted KLCI for one Year 

 
Figure 11 depicted three different time series forecasted for the simulated returns. This 
simulation was forecast for one year. For series 1, it can be observed that the time series 
shows a fluctuating trend with signs of volatility throughout the series. While for series 2, the 
plot suggested a more stationary and no trends or seasonal components before beginning to 
depict a variability towards the end of the year. For series 3, there is evidence of volatility 
clustering where large asset prices changes tend to be followed by other large price changes 
and vice versa. 

 
Figure 12: Forecast Value of KLCI Stock Market Prices in 2021 

 
Figure 12 depicted the value for KLCI stock market prices forecasted for year 2021. The final 
closing value for 31st December 2020 was RM1,627.21 and then used as the starting value to 
forecast the prices for year 2021 as shown by the three forecasted series in the plot. The stock 
price for KLCI forecasted for the red series which touches around RM1,825.00 and then more 
or less hovers around the number before falling at the end of the year. As per the green line 
forecast, in fact it continued to rise over RM1,800.00 and then fell back towards RM1,625.00 
before going higher towards the end of the year. Lastly, the black simulated line in fact 
provides the best forecast results out of the three. As per the black forecast line, KLCI may see 
a stock price of over RM1,850.00 before the end of 2021. 
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Conclusion 
In conclusion, the study is carried out to model and forecast the price and volatility of the 
Malaysian stock market namely the Kuala Lumpur Composite Index (KLCI). For the first 
objective; to model the volatility of KLCI using ARIMA model and GARCH processes model. The 
findings conclude that the ARIMA model is not suitable in modelling the volatility of KLCI since 
it cannot cater to the large variations that exist in highly volatile data and the long-term 
changes. Thus, the GARCH processes model was used in modelling the volatility where it can 
be inferred that volatility clustering in KLCI is quite persistant. From the GARCH family type 
model parameter estimation, the KLCI data was concluded to be highly volatile as there exists 
a highly volatile clustering. 
For the second objective, the GARCH processes model performance was assessed. The results 
concluded that the asymmetric model (AR (1) GJR-GARCH) had by far outperformed the 
symmetric model. The asymmetric AR (1) GJR-GARCH model coupled with the student-t 
distribution had performed very well with the KLCI dataset. The simulation process had further 
approved the findings by depicting that as the sample got larger during simulation, the closer 
the estimation approximates to the true parameters. The estimates of the AR (1) GJR-GARCH 
model show the nearest and most accurate simulation results. 
Lastly, AR (1) GJR-GARCH, which is the best model, has been used to forecast the daily return 
of KLCI price. The forecasting process resulted in three different outcomes where the first one 
foresees a stationary trend of RM1,825.00 all over the years. While the second forecast 
indicates a fluctuation of around RM1,825.00 to RM1,625.00 and the last outcome had 
forecast the best result where the trend shows a positive upward trend of over RM1,850.00 
all over the year of 2021. 
As this research only considered data with high volatility, it is recommended for future studies 
to use data with high volatility together with the existence of outliers to tackle and solve more 
problems. Besides, the future researcher can also consider using other GARCH family types 
such as the threshold GARCH (TGARCH) and the power GARCH (PGARCH). Last but not least, 
it is recommended for the future researcher to employ different time series data other than 
the stock market data.  
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