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Abstract 
In the modern era, it is very crucial to utilize the sustainable energy that is abundant in nature 
especially the solar energy. Due to this reason the research to develop an economically solar 
cell has been extensively studied. Aerosol-Assisted CVD, an economically developed method 
to produce the carbon solar call has proven its ability in this area to produce the solar cell. 
Five samples of pure a-C and nitrogen doped a-C:N were produced, with deposition 
temperatures ranging from 400°C to 600°C.  The current-voltage solar simulator 
characterization yielded an ohmic contact. Higher conductivity at a-C:N, x10-2 Scm-1 is 
attributable to a decrease in defects caused by the decrease in spin density gap with nitrogen 
addition. AFM measurements of structural characteristics at high temperatures reveal an 
even smoother image as the intense carbon ion bombardment at the thin film's surface 
increases.   
Keywords: Pure a-C, Nitrogen Doped a-C N, Structural Properties, Electrical Properties.  
 
Introduction  
Carbon material has recently piqued the interest of semiconductor researchers due to its 
appealing features resulting from the tunable ratio of sp2 and sp3 carbon bonding ratios. One 
of the carbon branches, amorphous carbon (a-C), is stated to feature a mixture of sp2, sp3, 
and even sp1 carbon sites, allowing the a-C's properties to be tweaked as required (Tan et al., 
2008). The a-C material is semiconducting, allowing it to take dopants (Podder et al., 2005), 
and it has a large band gap ranging from 0.0 eV to 5.5 Ev (Mominuzzaman et al., 2006). The 
a-C deposition parameter is also suitable with a low-cost glass substrate, as manufacturing 
temperatures can be as low as 350oC.  
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The low-cost chemical vapour deposition (CVD) technology was also used in the a-C 
production. However, several limitations of adopting the CVD approach include the lack of a 
suitable volatile precursor and the difficulty in controlling the stoichiometry of the deposition 
(Hou & Choy, 2006). To address these issues, the conventional CVD technique was modified 
into aerosol-assisted CVD (AACVD), which uses aerosol droplets to transport the precursor 
with the help of a carrier gas.We studied the use of AACVD to create the a-C, as well as 
employing the same approach to dope the a-C into an n-type a-C in this work. The dopant was 
nitrogen gas, N2, and a-C:N was generated. The photosensitivity of a-C:N is up to 6.2 eV, 
photoluminescence is up to 4.5 eV, it has a high resistivity, and it has a low dielectric constant 
(Nitta et al., 2003). Hou et al (2005); Kim et al (2007); Yang et al (2006) proposed the formation 
of nitrogen-containing carbon from several precursors, such as acetonitrile, pyrole, or 
polyacrylonitrile. At room temperature, the electrical and structural properties of both 
conditions were examined using the Bukoh Keiki CEP2000 solar simulator system and the Park 
System XE-100 atomic force microscope (AFM). 
 
Experimental Procedures    
Aerosol-assisted CVD (AACVD) was used to create the a-C and a-C:N utilising camphor oil 
(C10H16O) as a precursor. The AACVD method combines the use of a normal CVD system and 
the spray pyrolysis method with the help of a carrier gas. The carrier gas for the pure a-C was 
argon gas, which is an inert gas, whereas for the N doped a-C:N, nitrogen gas was chosen as 
the dopant gas, which simultaneously worked as the carrier gas. The carrier gas's primary 
function is to transport the camphor oil in gaseous form from the aerosol phase of the CVD 
to the heated substrate. To convert the liquid form of the precursor into the gaseous form, it 
was first heated to its vaporisation temperature (180oC). The temperature of deposition at 
furnace two was changed from 400oC to 600oC, with 5 samples each for a-C and a-C:N. The 
surface profiler DEKTAK VEECO 150 was used to measure the thickness of the samples, which 
ranged from 30nm to 70nm. The CVD system's furnace one was set to 200oC during the 
deposition process to aid in the atomization of the camphor oil. The deposition lasted 30 
minutes. Bukoh Keiki CEP2000 solar simulator system at room temperature and Park System 
XE-100 atomic force microscope (AFM) were used to characterise the electrical and structural 
properties of deposited a-C and a-C: N thin films.  
 
Results and Discussion 
Electrical Properties  

The electrical characteristics were investigated using the solar simulator system, and an 
ohmic graph was generated for both pure a-C and a-C:N, as shown in fig. 1. The supply voltage 
was set between -5 and 5 V. According to figures. 1 (a) and (b), pure a-C has a somewhat lower 
current value than a-C:N. The counter electrode was made of gold (Au) and had a thickness 
of 60nm. The current obtained for pure a-C was x10-7 A, but the current obtained for a-C: N 
when nitrogen was utilised as the dopant/carrier gas was 10-6 A. Both a-C and a-C:N were 
deposited on a glass substrate at five different temperatures (400oC, 450oC, 500oC, 550oC, 
and 600oC). The maximum slope of the ohmic graph was obtained at sample 600oC, and the 
slopes decrease as the deposition temperature rises.  The greater the slope, the lower the 
resistance value. The resistivity (ρ) and conductivity (σ) values were estimated from the 
resistance value using equations (1) and (2), where R is the resistance acquired from the I-V 
curve, w is the electrode width, t is the thickness of the a-C thin film, and L is the electrode 
length. 
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The conductivity () of pure a-C was computed, and the maximum conductivity was 
9.4x10-2 Scm-1 at 600oC, followed by 7.1x10-3 Scm-1 at 550oC, 1.9x10-4 Scm-1 at 500oC, 
2.2x10-4 Scm-1 at 450oC, and 1.8x10-4 Scm-1 at 400oC. In contrast, conductivity increases 
with temperature in a-C:N, reaching 3.9x10-2 Scm-1 at 600oC, followed by 9.1x10-3 Scm-1 at 
550oC, 2.2x10-3 Scm-1 at 500oC, 1.9x10-3 Scm-1 at 450oC, and 4.7 x10-4 Scm-1 at 400oC. 
The electrical properties of thin films can be produced theoretically by changing the density 
of crystal defects such as the vacancy, grain boundary, and film surface, which can then be 
directly related to the carrier concentration and mobility of the electron at different 
thicknesses (Huang & Meng, 2007). 

The samples deposited using nitrogen gas as the dopant/carrier gas have higher 
conductivity because nitrogen gas as the dopant gas for a-C can modify the conductivity of 
pure a-C from p-type to n-type. Because the spin density gap decreases with nitrogen 
addition, effective doping is said to reduce defects (Rusop et al., 2006). Aside from that, 
nitrogen addition has been shown to reduce compressive stress in films and increase 
conductivity (Liu et al., 2008). Furthermore, as previously noted, the modest rise in electrical 
conductivity is related to the removal of structural defects and restoration of structural order. 
As a result, the greater conductivity of nitrogen doped a-C:N can be attributed to this.  

Increasing the deposition temperature results in a larger thickness value (as proven by 
surface profiler measurements). The importance of carrier concentration and mobility in 
conductivity fluctuation has been reported (Alibart et al., 2008). As the thickness increases, 
so will the carrier concentration and mobility (Huang & Meng, 2007). Aside from that, the 
existence of * (sp2 graphitic bonding) and * (sp2 and sp3 diamond bonding) contributes to a-
C conductivity. The intensity of the * region increases with temperature, indicating the 
encouragement of sp2 bonding due to an increase in graphitic order (Endrino et al., 2009). 
The a-C and a-C:N materials have sp2 (graphitic) carbon bonding, and the ratio can be changed 
based on the deposition conditions, such as the deposition temperature (Zhu et al., 2009). 
The conductivity was believed to rise as the temperature rose. The increased conductivity of 
a-C and a-C:N films at higher temperatures (600oC) was due to the complete separation of 
the precursor atom and the development of more sp2 carbon bonding sites. More sp2 carbon 
bonding sites resulted in an increase in localised hopping states (Pradhan & Sharon, 2007). At 
lower temperatures, the a-C is credited to have a larger sp3 carbon bonding ratio, which 
explains the reduced conductivity. 
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Fig.1. Current-voltage graph of (a) pure a-C and (b) nitrogen dope a-C:N at different deposition 
temperature 
 
Structural Properties   

Figures 2 and 3 show 3D pictures of pure a-C and nitrogen doped a-C:N obtained using 
Atomic Force Microscopy (AFM). Figure 2 shows irregular structures of pure a-C, with just a 
growth of a "island" structure at 400oC, but as the temperature rises, the structure becomes 
more even. There are some aggregation spots in the sample at 400oC, 450oC, and 500oC, 
which could be caused by poor carbon atom dispersion. In comparison to the other samples, 
the growth of a-C began to develop smoothly between 550oC and 600oC. 

The AFM average roughness was calculated over a 30m x 30m region, and the roughness 
was not significantly affected by the deposition temperature. Within the scanning area, the 
sample has an average roughness of 0.361nm at 400oC, increasing to 1.080nm, 2.147nm, 
8.219nm, and 0.391nm as the deposition temperature increases. However, for samples 400oC 
and 600oC, we can clearly see that the tiny value was caused by distinct factors, where at 

(a) 

(b) 
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400oC the small roughness value was caused by inappropriate carbon atom growth, and at 
600oC the sample is smooth, therefore the roughness is minimal. The surface migration of 
the a-C particle is claimed to be accelerated for sample 550oC, resulting in the particle 
combining and creating the giant particle as compared to the lower deposition temperature 
(Valentini et al., 2001). On the other hand, as the temperature rises to 600oC, the sample 
becomes smoother, which could be attributed to an increase in the energetic carbon ion 
bombardment at the thin film's surface (Park & Hong, 2008). 

 
 

 
 

Fig.2. AFM images of pure a-C at different temperature 
(a) 400oC (b) 450oC (c) 500oC (d) 550oC (e) 600oC 

 
Nitrogen doped a-C:N exhibits consistent AFM pictures at 500oC, 550oC, and 600oC, 

whereas aggregation is observed at 400oC and 450oC. There was a carbon patch on the 
surface of both samples, and at 450oC, only a carbon 'tower' can be observed in the centre 
of the area, with no sign of carbon development in the surrounding area, highlighting the 
improper growth of carbon at the sample. The average roughness revealed was relatively 
minor, ranging from 0.00 nm to 1.463 nm, and was not affected by the deposition 
temperature. Figures 3(a) and (b) show an uneven dispersion of carbon particles, but as 
temperature increases, the structural properties of the a-C:N improve, indicating that lower 
temperatures were not suited for a-C:N growth. Aside from that, at the same deposition 
temperature, a-C:N has a superior structure than pure a-C. Small roughness suggests lower 
grain boundaries, which can be linked to the particle's proclivity to crystallise (Hagouel, 2005). 
The acquired roughness value was close to that reported by (Miyajima et al., 2005).  

Overall, the findings indicate a link between deposition temperature and nitrogen 
doping in the growth of a-C and a-C:N. With increasing deposition temperature, a transition 
from a "island" structure to smaller particle and more uniform thin films with nitrogen 
presence occurs. 

 

(e) (d) 

(c) 
(b) 

(a) 
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Fig.3. AFM images of nitrogen doped a-C:N at different temperature 
(a) 400oC (b) 450oC (c) 500oC (d) 550oC (e) 600oC 

 
Conclusion 

Finally, a-C and a-C:N thin films were produced using the Aerosol-assisted CVD approach 
from the natural precursor camphor oil. The current-voltage solar simulator characterization 
yielded an ohmic contact with gold (Au) as the counter electrode. Higher conductivity at a-
C:N results from a reduction in defects when the spin density gap decreases with nitrogen 
addition. Furthermore, the nitrogen addition reduces the compressive stress of the films, 
resulting in better conductivity. The roughness value of the AFM images varies depending on 
the deposition temperature of the pure a-C and the nitrogen doped a-C:N. Because of the 
more intense carbon ion bombardment at the thin film's surface at high temperatures, the 
AFM clarifies an even smoother image. 
 
Contributions 

The development of low-cost methods for manufacturing solar cells provides various 
benefits that can have a substantial impact on the solar business and renewable energy 
adoption. The primary advantage is affordability as the production costs are lower, solar cells 
are more affordable, making them available to a wider section of the population. This has the 
potential to expedite the adoption of solar energy in both industrialised and developing 
countries 
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